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SUMMARY 

A material-balance equation describing a linear non-equilibrium chromato- 
graphic system that involves finite mass transfer between many phases is derived. 
Mass-transfer terms are included in the equation, so that the reversible transfers among 
all the phases are permissible, provided that they remain first-order with respect to 
solute concentration. The solution for the equation is achieved by means of the 
Laplace-transform method, and statistical moments are calculated from the trans- 
formed solution. The moment expressions obtained include almost completely the 
preceding results which were limited to a special case of the present work. 

INTRODUCTION 

Many workers have dealt with the kinetic aspect of chromatographic processes 
in terms of non-equilibrium, i.e., finite mass transfer betmeeen mobile and stationary 
phases. Among the earlier investigations, Lapidus and Amundson’ first solved a 
material-balance equation for a linear non-ideal chromatographic system by treating 
a non-equilibrium process as a two-phase problem. Van Deemter et u/.~ utilizing the 
results of Lapidus and Amundson, obtained their equation relating the height equiv- 
alent to a theoretical plate (HETP) to the linear velocity of the mobile phase. The 
so-called C term in their equation has predicted well the contribution of mass-transfer 
resistance to the plate height so far as a single stationary phase is considered. How- 
ever, there must be more than two phases in a real chromatographic process; in gas- 
liquid chromatography, for example, there are gas phase, gas-liquid interface, liquid 
phase, liquid-support interface and solid support phase. Moreover, if a solute under- 
goes chemical changes to produce a new substance in the stationary phase (e.g., a 
charge-transfer complex), it can be regarded as a new phase3-‘. Giddings applied 
the perturbation theory in solving multiple-phase chromatographic problems involv- 
ing the consecutive or simultaneous sorption and desorption of the solute, and ob- 
tained analytical expressions for the longitudinal diffusion coefficient due to the non- 
equilibrium effect7ss. Yamazakiy, using the Mellin-transform method, and KoEiPik’O, 
using the Laplace-transform method, have solved material-balance equations de- 
scribing a linear non-ideal chromatographic system involving a first-order chemical 
reaction in th,e stationary phase, and have derived equations for the statistical mo- 
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Fig. I. Scheme of mass transfer. 

ments. Their results are valid so far as the models considered by them are concerned. 
We shall now consider a multiple-phase chromatographic model combining the 
earlier mass-transfer models’*7-1o and involving both consecutive and simultaneous 
chemical reactions, and solve the material-balance equation describing such a model 
by means of a Laplace transform. The first four statistical moments can then be calcu- 
lated from the transformed solution. 

THEORY 

The mass-transfer model to be considered is similar to that adopted by Gid- 
dings7e8 for deriving the non-equilibrium effect as shown in Fig. 1, which is based on 
the following assumptions: 

(I) that longitudinal diffusion and convection occur only in the mobile phase; 
(2) that lateral diffusion and mass transfer involving chemical reaction are 

together specified by the coefficient, I<,,, and 
(3) that the volume fraction of each phase does not change over whole column 

length. 
If the mobile phase is specified by the subscript I, the following simultaneous 

partial differential equations can be established. 

D azc,/as - lrac,/az = ac,laf + kl,c, + k12c2 + - v - + kI,,c,, 
0 = ac,jaf + kZlc, + k22c2 + - . - + k2,,c, 
0 = acyaf + kzlc, + ka2c2 -i- - - - + k3,,c,, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *........ 
. . . . . . . . . . . . . . . . . . . . . . . . . . ..*....a..... 

0 = ac,,iaf + IC,,G + IC,,~C~ + e - + + k ,,,, c,, 

(1) 

where D is the longitudinal diflusion coefficient, LI is the linear velocity of the mobile 
phase, C, is the solute concentration in the ith phase, II is the total number of phases, 
and /cl, is ihe kinetic coefficient *. 
- _ 

l The meaning of this coefficient can be clarilied by citing the example from Lapidus and 
Amundson’s work’, where a two-phase model was represented by the sets of equations 

D awl/a22 - t4ac,pk = ac,iat -k U/E (KC, - c,) , 
0 = ac,iat - u(~~, - c,) 

where a, E and K arc the mass-transfer coefficient, the volume ratio of the mobile and stationary 
phases and the distribution coefficient. respectively. The kinetic coefficient, Ic,,, in eqn. I is then re- 
lated to u, E and K by the expressions k ,, = UK/E. k12 = -U/E, krr = -UK, and i(22 = u. 
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If there is no solute in the column at t = 0, and the solute is expressed in the 
formf,(r), the initial and boundary conditions can be written as follows (see also eqn. 
8 in ref. 10) 

Then, applying a Laplace transform to eqn. I with respect to 1, 

s c, + kc’, -t- I<& -t- * * * + Ic,,,~,, = D d2C,/dz2 - II dC,/dz 
S c’2 + Ii2ICI + * * * + /C&,, = 0 
s c’, + Ic3*C, + * ’ * + Ii& - 0 I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . ,............... 

s c,, + /c,,,e, + ’ * ’ + k,,,c’,, = 0 I 

where s is the Laplace variable and 

G(Qz) = 0, 
C,(f,O) =/i(f), C,(f,co) 

- 0 C,(O,=) = 0, C,(f,O) = 0 (i = . 2,3, . , 17) 1 

cds,z) = .fpB eswt C,(f.z) df 
0 

The application of matrix representation simplifies eqn. 3 to 

(K + s E,,) c = (D d2e,/dz2 - II dc,/dz, 0, 0, * * -, 0)’ 

(2) 

(3) 

(4) 

(5) 

where T means the transposition of the vector, E,, denotes the rlth order unit matrix, 
and 

2 = (C,, c2, CJ, * * * C,,)T (6) 

and 

K= (k,,) = /C,,/C,2/C,J . . . . . . /c,,,- 
k-2, I<22 I<23 . . . . . * k-2,, 
/CJI . . . . . . . . * . * * . . (7) 
. . . . . . . . ...**..*.. 
li ,, , Ic ,,2 . . . * . . . . k ,,,, 

By eliminating C,(s,z) (i = 2,3, . . . 11) from eqn. 5 through the application of 
Cramer’s rule and then rearranging, we obtain 

D d2~,/dz2 - II dC,/dz - g’(s) c’, = 0 (8) 

where 
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In eqn. 9, E,_, is the (II- 1)th order unit matrix and KI means the sub-matrix 
obtained by eliminating the first column and the first row of matrix K, and I I indicates 
the determinant. The solution for eqn. 8 under the conditicr? IJf Laplace transform 
of eqn. 2 is then given (see ref. 1) by 

Cds,z) = .I%) exp [ [($-) - Vi-i&--)’ + $-- &)]I] (10) 

If the solute input formf,(t) can be regarded as Dirac’s &function, the chromatogra- 
phic elution curve,fO(s), in the Laplace domain is represented by the equation 

_jTo(s) = rn exp [[(&) - V(& + &(&] (11) 

where 111 is the amount of solute in a unit of the &function and L is the column length. 
To obtain the equations for the zero-th through to the third statistical moments‘ 

the well-known relationships (see ref. 1 I) 

M; = !,‘y (-a/as) In_&(s) 

ML = lj_y (P/W) In&(s) 

M3 = lj_~ ( -8/W) In _&(.+) 

(12) 

are used, where In indicates the natural logarithm and MO, M;, Mz and M3 are the 
zero-th, the first ordinary, the second central and the third central moments, re- 
spectively, and the three last-named moments are also equal to the corresponding 
cumulants. 

Substituting eqn. I1 into eqn. 12, the final forms of the first four moments 
are obtained as 

2 MO = tn exp 
[I[ 

-&- - 
l4 ) -& + &W]L] 

, 
Ml = -& [ (&)I + -& AC))] -“‘5P_‘(0) 

Mz = &$ [(+)’ + -&~~W]-1’5 [B’VO12 - & [(G)’ 

+ -+- E(O)] -oesg”(o) 

Ma = & [ (+)2 -I- +- ~(o)]-“~ [$(o)]J - -& [ (+)2 

+ & I(o)]-1’5 B’(O) B”(O) + -& [(&)2 + + g(o,]-“*s Z”‘(O) 

(13) 
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in which 

+I Kt( 

i%‘(‘) = 1 K, 1 

n-1 ,I n-1 

-g:“(o) = 
5 2;! &I 

IKI! -2 
( $ 1 Ki 1) (“$‘I KI, 1) IKI +'IKu! 

1 K1 I’ +2 1 - K,13 
n-2 n-1 

(Kl(Z; + !Kwl) 

1 Kr I’ 
,I - 2 ,I - I ,, n--I ” It- 1 

1 Km 1 B”‘(O) 5 5 r;’ 3 (5 +I Ku!) 1 Ku I) ‘+ = -- 

1 KI 1 1 KI I" 
-t 

(14) 

-r u 1 1’ -3 1 KI 1’ - - KI 
n-2 11-l 

1 K 1 (“-$I I KII !) 

6 1 KtI’ T4 

IKI 2; + IKI,,I 

1 K1 I3 -- - 

and Km. . . is a sub-matrix obtained by eliminating the ith, theJth and the kth col- 
umns and the rows of K’. 

APPLICATION OF THEORY c 

In this section, we shall develop the application of our results to a special sys- 
tem in which the total amount of a solute neither increases nor decreases during the 
chromatographic process, in other words, a system in which irreversible chemical 
reactions do not occur. However, if a reversible reaction does occur, it must remain 

l As an example, and to avoid confusion of the notation,Z. -2% I K,,. . . I. let K be (3 x 3) ma- 
J I 

JCll ICI1 

ICll kl2 I) = Kh -I- k2z) -I- Um -t k,,) -t (k22 + k,,)]. 
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first-order with respect to solute concentration, although the over-all order may be 
different. For this system, a chromatographic peak area, M,,, is the response due to the 
total amount of solute initially introduced into the column. Accordingly, MO = n;, 
so that g(O) = 0; thus, 1 K 1 = 0, and the other moment equations can be reduced to 

ML = + [g’(0)-Jr - +“(O, 

M = 12DzL 
E’cQ13 

6DL 
3 

u= 
- 7 B’(O> g”(0) + -& i”‘( 0) 

where 

+6 

($1 K, 1) +” I KII I) 
-3 

( ,+ 1 K, ( ) ( “$ ‘f” I KI~J I) 

I KI I3 I KI I2 

Thus, I K I = 0 is characteristic to this chromatographic system, and, with ap- 
propriate substitution for k,J, these equations reduce to the corresponding expressions 
in earlier work**7-9. 
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